

Li-ion Batteries: Need, Safety and Low Temperature Performance

Vilas G. Pol

vpol@purdue.edu

https://engineering.purdue.edu/ViPER/pol.html

http://americanhistorylinks.com/GlobalWarming.htm

Conventional grid - It is a unidirectional grid in which power generates at one end and then it is transmitted to the areas which requires the power. After the long transmission it is then distributed to each specific customer using distribution transformer to lower down the voltage at consumer level.

Source: Oncor Electric Delivery Company **Microgrid** - It is a grid which can work with the connection of conventional grid and also it can work isolated which is known as islanded mode and its bidirectional

Source: https://clean-coalition.org/community-microgrids/

Why do we need Community Microgrids?

- US power system is century-old technology, vulnerable to extreme weather event
- Since 1980, the US has experienced over 280 weather disasters
- 262 people died in the 2020 events and total cost of \$1 billion.

U.S. 2020 Billion-Dollar Weather and Climate Disasters

This map denotes the approximate location for each of the 22 separate billion-dollar weather and climate disasters that impacted the United States during 2020.

Customer Load Management

Energy Construction & Utilities California Community Colleges Workforce & Economic Development

Customer Load Management, cont.

Energy Construction & Utilities California Connunity Colleges Workforce & Economic Development

Types of Energy Storage

Elect	rochemical	Mechanical	Thermal
Lanzhd [®] Capality:2600mAr	echargeable	<complex-block></complex-block>	T. Bauer, 2012 565°C Hot Salt Ssan Generator POS
B	atteries	Hydro	Salt
Discharge Time	1 min – 8h	4-16h	hours
Lifetime	1,000 - 10,000	30-60 years	30 years
Energy Density (Wh/L)	200-400	0.2-2	70-200
Efficiency	85-95%	70-85%	80-90%
Cost	High	Low	Low

Technology Towards Commercial Na-ion Batteries

US Patent Etacheri et al, Environmental Science and Tech., 2015, 49, 11191–11198

Carbon Sheets vs Na_aNi_{1-x-v}Mn_xM_vO₂ 4.5 4.0 4.05 3.7 **Coltage ()** 3.0 2.5 ACS Public 3.08 2.85

2.0

1.5

1.0

d

20

40 Specific capacity (mAh/g)

60

80

-60 -40 -20

0

dQ/dV (mAh/g/V)

Carbon sheet is scalable product does provide 85% capacity after 300 cycles \checkmark

J. Tang, J. Barker, V. G. Pol, Energy Technology, 2018, 6, 213-220

Trask Innovation Funds, 2018

What ViPER Group Does?

Interest: Battery Safety, Extreme Temperature Batteries, Next Gen.Lithium-ionSodium ionPotassium ionLi-S/Solid state

Discovery, Characterization and Testing of Energy Storing Materials

250+ publications, 14 issued US Patents, 20 applications, 4 book chapters

Classes of battery

Primary vs. Secondary Batteries

- Cell reaction is irreversible
- Must be discarded after use
- Have relatively short shelf life
- They cannot be used as storage devices
- Can not be recharged
- e.g. Dry cell.

- Cell reaction is reversible
- May be recharged
- Have long shelf life
- They can be used as energy storage devices
- They can be recharged.
- e.g.Li-MnO₂battery, Lead acid, Ni-Cd battery.

Standard Modern Primary Batteries

- <u>Zinc-Carbon</u>: used in all inexpensive AA, C and D dry-cell batteries. The electrodes are zinc and MnO₂-carbon, with an acidic paste between them that serves as the electrolyte. (disposable)
- <u>Alkaline</u>: used in common Duracell and Energizer batteries, the electrodes are zinc and manganeseoxide, with an alkaline electrolyte (KOH).

$$\begin{array}{l} Zn_{(s)} + 2OH^{-}_{(aq)} \rightarrow ZnO_{(s)} + H_2O_{(l)} + 2e^{-} \left[e^{\circ} = 1.28 \text{ V}\right] \\ 2MnO_{2(s)} + H_2O_{(l)} + 2e^{-} \rightarrow Mn_2O_{3(s)} + 2OH^{-}_{(aq)} \left[e^{\circ} = +0.15 \text{ V}\right] \end{array}$$

Overall reaction: $Zn_{(s)} + 2MnO_{2(s)} \rightarrow ZnO_{(s)} + Mn_2O_{3(s)} [e^\circ = 1.43 \text{ V}]$

CANNOT BE RECHARGED

Theoretical Capacity of Materials

From Faraday's 1st Law of Electrochemistry

 $1Q = [6.241 \times 10^{18} \text{ <u>electrons</u>]}$

I gm. equivalent wt. of materials will deliver 96487 Coulombs

Thus, 96487 / 3600 = 26.8 Ah

• At # of C is 6 x 2 = 12 (atomic mass)

Forming LiC_6 structure 6 x 12 = 72

- Theoretical specific capacity of Graphite
 = 26.8/72
- = 0.372 Ah/g

= 372 mAh/g

Existing Battery Types

Specific energy is the total energy a battery can deliver in watt-hours per kilogram (Wh/kg)

Specific power is the battery's ability to deliver power in watts per kilogram (W/kg).

History of Li-ion batteries

1970: M. S. Whittingham – Proposed Li ion battery (SUNY, USA).

1980 : J. Goodenough - Layered LiCoO₂ material as cathode (Oxford University, Now at UT)

1991 : SONY Commercialized Li ion battery (LiCoQ₂ as cathode, Japan).

Chevrolet Volt (GM)

EV Range : 50 miles per charge Battery Type : 16kW.h Lithium Ion Cost of Battery : \$11,000

Currently, >90 % of Li-ion cells are manufactured in Japan, Korea, China

We are not trading our dependence on foreign oil to a dependence on foreign batteries

How many batteries are required to run your TESLA?

A 90 kWh *battery* built with Panasonic 3.4 Ah 18650 *cells* will require about **9000** *cells*

18650

Lithium ion Batteries are Everywhere!

MARKET

(2018) \$33 BN

Ding et al., Electrochem. Energy Rev. 2019

Battery Research Challenges

Cost

Current projected cost (25 kW battery) ~ \$1000

- Target cost (25 kW battery) \sim \$500

Safety

Inherently safe batteries needed

- Overcharge protection circuitry expensive

Life

Current technology ~ 5 to 10 years - Target ~ 15 years

Low Temperature Performance Current technology ~ Sluggish < 0 °C - Target ~ -30 °C (cold cranking)

John B. Goodenough et al., Chemistry of Materials (2010) 22, 587

Low Temperature Battery Applications

• Space, defense, daily life applications of lithium-ion batteries

Major Two Challenges in Current Systems

Electrolyte issue

Battery evaluation system issue

Several limitations to test batteries below -70 °C with commercially available chambers and battery cyclers.

Li-ion Battery Low Temperature Challenges

Solid Electrolyte Interphase (SEI)

Instability

Dendrite growth at high rate or cycles

Kinetic limitations for charging speeds

Small optimal temperature operating window

 $(0^{\circ}C \text{ to } 40^{\circ}C)$

Low Temperature Limitations <u>4 Main Areas of Focus</u>

N Chawla, Batteries (2019)

Electrolyte Solvation Mechanism for Reduced Charge Transfer

Current EC-based Electrolytes

⇒ Essential solvent of EC for stable SEI layer

Li⁺(EC)₄

Limitations for Li⁺ kinetics

- Tight solvation shell surrounding Li⁺ in solution
- Presenting an intrinsically high desolvation barrier
- High freezing (melting) point (36 °C)

J. Electrochem. Soc., 2014, 161, A1415-1421

EC-free + Anion-derived Solvation Structure

* SCE: Superconcentrated Electrolyte LSCE: Localized Superconcentrated Electrolyte WSE: Weakly Solvating Electrolyte

Angew. Chem., 2021, 133, 4136-4143

Solution to Electrolyte Issues

Approach 1 - Cyclopentyl Methyl Ether (CPME) based WSE

Approach 2 - Tetrahydrofuran (THF) based SCE

Solution to Battery evaluation system issue

Purdue's Ultra Low Temperature Test Facility

<mark>3 cm x 3 cm</mark> Pouch cell

Approach 1- Cyclopentyl Methyl Ether (CPME) based WSE

- CPME (B.P: 106 °C and M.P: -140 °C)
- High solubility of the salt (7M)
- Environmentally safe and economically feasible CPME solvent
- Unique solvation structure consisting of CIPs and AGGs
- AGG-I \rightarrow An FSI⁻ bonded with 2 Li⁺, AGG-II \rightarrow An FSI⁻ bonded with 3 Li⁺

Pol et al. Chem. Commun. 2022, 58, 5124

Low Temperature Electrochemical Performance

and 330 mAh g⁻¹ at 0, -10, -20 °C, respectively.

٠

• Even at -40 °C, the cell can deliver 274 mAh g⁻¹ without electrolyte freezing.

Pol et al. Chem. Commun. 2022, 58, 5124

Why Enhanced Low Temperature Electrochemical Performance?

• Graphite||Li cell in the CPME based WSE

XPS analysis for SEI

 Inorganic LiF-rich SEI would helps in overcoming the main bottleneck of the high Li⁺ desolvation energy.

Approach 2 - Tetrahydrofuran (THF) based SCE

- Low freezing (melting) point of THF (-109 °C),
- Low viscosity (0.53 cP)
- Acceptable dielectric constant (7.5)

THF based SCE

* CVE: conventional electrolyte (1M LiPF₆ EC/DEC (1:1 v/v)) HSCE: high salt concentration electrolyte (5M LiFSI THF)

- Thinner SEI layer (3~4.5 nm)
- Lower resistance and facile Li⁺ transport

Mechanism with XPS on SEI layer

- FSI⁻ decomposition (Anion derived SEI)
- \rightarrow Organic less and inorganic rich SEI (LiF, Li₃N, and Li₂S)

 \rightarrow Stability improvement and rapid reaction kinetics at the electrolyte-electrode interfacial region

Low Temperature Electrochemical Performance

Graphite || Li

- Enhanced subzero temperature (0 to -40 °C) performance
- 330 mAh g⁻¹ (RT), 300 mAh g⁻¹ (-20 °C), 84 mAh g⁻¹ (-40 °C)

Enhanced Low Temperature Performance

Graphite || Li

- Enhanced subzero temperature (-40 °C) performance
- Graphite||Li half-cell with THF based SCE- promising long-term cycling

Full Cell: Enhanced Low Temperature Performance

•

NCM622 || Graphite

• HSCE: high salt concentration electrolyte (5M LiFSI THF)

CVE: conventional electrolyte (1M LiPF₆ EC/DEC (1:1 v/v))

• NCM622 | |Graphite full-cell with THF based SCE (2.8-4.2 V)

 \rightarrow 161 mAh g⁻¹ (RT), 130 mAh g⁻¹ (-20 °C), 70 mAh g⁻¹ (-40 °C)

Necessity of Reliable Battery Testing System

Extreme cold temperature environment

Lunar surface (-173 to 127 °C) / International Space Station (-157 to 121 °C) / Polar regions of Earth (-60 to 0 °C)

Difficulty to simulate extreme cold climate for battery development

• It inhibits the ability to research, develop, and demonstrate potential battery technologies.

Current Standard Setup for Low Temperature Test

Environmental and battery chambers and coolers

Brand	Name	Lowest temperature [°C]	Technology	Cost [\$]	LN ₂ usage [L hr ⁻¹]	Volume [L]
ESPEC	MC-812R	-85	Refrigeration	15 K	Х	64
AES	SD-502	-70	Refrigeration	18 K	Х	60
AES	ZBD-108	-190	LN ₂	25 K	30	226
Thermotron	SM-8-8200	-68	Refrigeration	25 K	Х	226
LNEYA	GX-A028N	-100	Refrigeration	15 K	Х	280
TestEquity	3007-LN2	-150	LN ₂	34 K	6.2	200
Purdue University system	-	-190	LN ₂	24 K	0.63	N/A

Limitations for Low Temperature Battery Testing

Expensive infrastructure is required

It is difficult to create a cooling system capable of -100 °C or below without LN_2 .

Commercial systems has high LN_2 consumption rates (6 to 30 L hr⁻¹).

Resistance issue on commercial cell holder at low temperature

Arbin battery cycler cell holders are only rated to operate down the -20 °C with negligible resistance change.

Purdue's Ultra Low Temperature Test Capability

Affordable cost and accurate/reliable electrical measurement

- Available temperature → Up to -175 °C, Simulating extremely cold temperature environment (Lunar, Space, High Altitude, and Polar regions)
- Efficient LN_2 flow to minimize LN_2 usage (0.63 L hr⁻¹),
- Suppressed frost buildup by Ar purging *Pol et al, Energy Technol.*, **2022** 2200799.

Ultra Low Temperature Battery Testing

LTO||Li cell with CPME based WSE

- Coin cell test in Arbin-ESPEC chamber (commercial) and our system
- Limitations in commercial cell holders (resistance issue at low temperatures)
 → Large deviation in voltage profiles below -40 °C

Pol et al, Energy Technol., 2022, 2200799.

LTO anode INSTEC (-100 °C) Cycling

• Li₄Ti₅O₁₂ Spinel produces 160 mAh/g capacity at room temperature that is significantly reduced at -100 °C.

Pol et al, Energy Technol., 2022, 2200799.

Ultra-low Temperature Battery Cycling (-60 °C)

Pouch Cell Preparation

Lithium Metal Battery Pouch Cell's Specification and Schematics

Cathode : NMC811 (1D)
Thickness : 65 μm (LM)/ 140 μm (NMC811)
Separator : Polypropylene
Electrode Area : 7 X 7 cm ²
Cell capacity : ~300 mAh
Cell voltage : 3.8 V

Pouch Cell Electrochemical Performance

Room Temperature Prototype Demonstration

300 mA toy car

Pouch Cell Operating at -30 °C

Record Title: "Purdue University's Advanced Lithium-ion Battery Charging and Discharging at Lowest (-100 Degree Celsius) Temperature

Record Holder Name: Vilas Pol Energy Research (ViPER) Group, Davidson School of Chemical Engineering, Purdue University, IN 47907, USA

Date/time : Dec. 21, 2022 @ 2pm

Purdue graduate, Neil Armstrong stepped on the moon for the first time; Advanced lithium-ion batteries are next – Vilas G. Pol

Summary

- Low temperature batteries are showing huge promise via electrolyte designing and tailoring.
- Solvent, salt and concentration of electrolyte modifications could design extreme temperature batteries
- We have developed extreme low temperature (-195 °C) battery testing facility for coin and pouch cells.
- Extreme cold power generation strategies are outlined.

Acknowledgement

Vilas Pol Energy Research

Vipe